

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

	Cou	rse Syllabus	
Course Code	Course Name	Credits	Contact Hours
0401530	Distributed Network Synthesis	3	3 T

INSTRUCTOR/COORDINATOR		
Name	Dr. Rula S. Alrawashdeh	
Email	rular18@mutah.edu.jo rularsr18@gmail.com	
Office Hours	13:00-14:00 (Sun, Tues, Thur)	

TEXTBOOK			
Title	Microwave and RF Design: Transmission Lines		
Author/Year/Edition	Michael Steer/2019/3rd Ed		
Other Supplemental Materials			
Title	Microwave Filters for Communication Systems: Fundamentals, Design, and		
	Applications		
Author/Year/Edition	Richard J. Cameron, Chandra M. Kudsia, Raafat R. Mansour /2018/ 2nd Ed		

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Lumped and distributed circuits. Transmission line sections as distributed elements. Richards transform and Richards theorem. Kuroda equivalent circuits. Design of microwave filters, couples, dividers and phase sniffers in microwave and millimeter wave using distributed networks fundamentals.

B. Pre-requisites (P) or Co-requisites (C) Network Synthesis and Filters (0401215)

C. Course Type (Required or Elective)

D 1	
н.	ective

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

<u>CLO1</u>: **Distinguish** between lumped and distributed circuits [1]

<u>CLO2</u>: Apply Richard's transformation and theorem to convert Lumped element circuits to distributed element circuits [1].

<u>CLO3</u>: Apply Kuroda transformations to convert different sections of transmission lines [1].

CLO4: Analyze the design microwave power dividers, directional couplers and filters [7].

B. Student Learning Outcomes (SLOs) Addressed by the Course						
1	2	3	4	5	6	7
√						\checkmark

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Chapter 1: Introduction to lumped and distributed circuit theory	1	3
Chapter 2: Transmission line circuits and sections	4	12
Chapter 2: Richards transform and Richards theorem.	2	6
Chapter 3: Kuroda equivalent circuits	2	6
Chapter 4: Microwave devices and filters design	5	15
Total	14	42

EVALUATION				
Assessment Tool	Due Date	Weight (%)		
Mid Exam	According to the university calendar	30		
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20		
Final Exam	According to the university calendar	50		

ABET's Students Learning Outcomes (Criterion # 3)

	Relationship to program outcomes		
ABET 1-7		Engineering Student Outcomes	
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3		an ability to communicate effectively with a range of audiences.	
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
7	\checkmark	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	